Characterization of Chimeric *Bacillus thuringiensis* Vip3 Toxins

Jun Fang, Xiaoli Xu, Ping Wang, Jian-Zhou Zhao, Anthony M. Shelton, Jiaan Cheng, Ming-Guang Feng and Zhicheng Shen

Updated information and services can be found at:
http://aem.asm.org/content/73/3/956

These include:

REFERENCES

This article cites 27 articles, 11 of which can be accessed free at: http://aem.asm.org/content/73/3/956#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Characterization of Chimeric Bacillus thuringiensis Vip3 Toxins

Jun Fang, Xiaoli Xu, Ping Wang, Jian-Zhou Zhao, Anthony M. Shelton, Jian Cheng, Ming-Guang Feng, and Zhicheng Shen

Institute of Insect Sciences, College of Agriculture and Biotechnology, and Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310029, China; and Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York 14456

Received 3 September 2006/Accepted 13 November 2006

Bacillus thuringiensis vegetative insecticidal proteins (Vip) are potential alternatives for B. thuringiensis endotoxins that are currently utilized in commercial transgenic insect-resistant crops. Screening a large number of B. thuringiensis isolates resulted in the cloning of vip3Ac1. Vip3Ac1 showed high insecticidal activity against the fall armyworm Spodoptera frugiperda and the cotton bollworm Helicoverpa zea but very low activity against the silkworm Bombyx mori. The host specificity of this Vip3 toxin was altered by sequence swapping with a previously identified toxin, Vip3Aa1. While both Vip3Aa1 and Vip3Ac1 showed no detectable toxicity against the European corn borer Ostrinia nubilalis, the chimeric protein Vip3AcAa, consisting of the N-terminal region of Vip3Ac1 and the C-terminal region of Vip3Aa1, became insecticidal to the European corn borer. In addition, the chimeric Vip3AcAa had increased toxicity to the fall armyworm. Furthermore, both Vip3Ac1 and Vip3AcAa are highly insecticidal to a strain of cabbage looper (Trichoplusia ni) that is highly resistant to the B. thuringiensis endotoxin Cry1Ac, thus experimentally showing for the first time the lack of cross-resistance between B. thuringiensis Cry1A proteins and Vip3A toxins. The results in this study demonstrated that vip3Ac1 and its chimeric vip3 genes can be excellent candidates for engineering a new generation of transgenic plants for insect pest control.

Insecticidal Bacillus thuringiensis endotoxins have been extensively explored for biological control of insect pests. To date, over 350 B. thuringiensis endotoxins have been identified (3, 6, 7) (N. Crickmore, D. R. Zeigler, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, A. Bravo, and D. H. Dean, Bacillus thuringiensis toxin nomenclature, 2006, http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), and some of their genes have been used to generate commercial transgenic insect-resistant crops (15, 16, 27). However, the prolonged application of B. thuringiensis formulations and the widespread planting of transgenic crops with B. thuringiensis endotoxins have raised concerns over the development of insect resistance (1, 12, 13, 17, 23, 24, 25, 26). Thus, alternative insecticidal proteins that do not share a mode of action identical with that of B. thuringiensis endotoxins are highly desirable for the development of the next generation of transgenic insect-resistant crops.

In addition to the endotoxins, B. thuringiensis also produces secreted insecticidal proteins during its vegetative growth stage, namely, vegetative insecticidal proteins (Vip). Since the discovery of the first Vip toxin, two major groups of Vip toxins have been identified in B. thuringiensis. One group of Vip toxins consists of binary toxins which are made of two components, Vip1 and Vip2 (27). The combination of Vip1 and Vip2 is highly insecticidal to an agriculturally important insect, the western corn rootworm (Diabrotica virgifera), but does not show any insecticidal activity for any lepidopteran insects (14). The other group consists of Vip3 toxins, which share no sequence similarity to Vip1 or Vip2. The first-identified Vip3 toxin, Vip3Aa1, is highly insecticidal to several major lepidopteran pests of maize and cotton, including the fall armyworm Spodoptera frugiperda and the cotton bollworm Helicoverpa zea, but shows no activity against the European corn borer Ostrinia nubilalis, a major pest of maize (11). The deletion of the vip3Aa1 gene from a B. thuringiensis strain resulted in a significant reduction of the insecticidal activity of that B. thuringiensis strain, suggesting that Vip3 contributes to the overall toxicity of B. thuringiensis strains (9). It was also observed that Vip3Aa1 kills insects by lysing insect midgut cells (28) via cell membrane pore formation (18).

However, the potential of Vip3 toxins for insect control has not been extensively explored. At present, the understanding of the diversity of the Vip3 toxins is very limited. Compared to over 300 B. thuringiensis crystal toxin genes cloned, only a dozen or so vip3 genes have been cloned and characterized previously (20, 23; Crickmore et al., http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), and many of these known Vip3 toxins have insecticidal activities similar to that of Vip3Aa1 (2, 4, 10). Enriching the diversity of available vip3 genes will likely broaden the spectrum of activity of the Vip3 family and thus facilitate the application for control of various insect pests.

In this study, we used a PCR-based screening procedure to screen our collection of B. thuringiensis isolates for vip3 genes. A new vip3 gene was cloned, and chimeric genes were created by sequence swapping with a previously known vip3 gene, vip3Aa1. We found that one chimeric Vip3 toxin gained novel properties of insecticidal activity. Further-
more, we observed that the Vip3A toxins are highly active against a *B. thuringiensis*-resistant strain of *Trichoplusia ni*.

MATERIALS AND METHODS

PCR screening of *B. thuringiensis* isolates. *B. thuringiensis* isolates were cultured overnight at 37°C in Terrific broth medium in 24-well cell culture plates without shaking. One microliter of the overnight culture of each strain was used as the template for PCR analysis with two pairs of primers in a single reaction in 96-well PCR plates. The two primer pairs (VIF-VIR and V2F-V2R) were designed based on the vip3Aal sequence (GenBank accession no. L84811) to amplify two DNA fragments of a vip3 gene corresponding to nucleotide positions from 54 to 498 and from 2006 to 2370 of vip3Aal. Analysis of the previously cloned novel vip3 genes showed that the fragment from nucleotide 54 to 498 is well conserved whereas the fragment from nucleotide 2006 to 2370 is much less conserved (20, 23). The primers used were VIF (5’allTTATTTTTAATGGCATT TATGGAATTTGC, VIR (5’-GGGATTTCAATTTCTCAAGTATGGTAG), V2F (5’-CCCTTTTATTGAATTTCACTGGAGAATT), and VIR (5’-TTATCTACAAATTTAAAAATG). The PCR products were examined by agarose gel electrophoresis. The successful amplification of two DNA fragments 444 and 364 bp in size, respectively (Vip3Aa1-BglII, 5’-GGCTAGATCTATGAACAAGAATAATACTAAATTAAAC), and the other was designated Vip3Ac1-XhoI (5’-TCCCGCTCGAG TATACATAGAGACATGCTCTGAAAAAATGTTTAAATTTTAAAAAGATGAGAA). The full-length chimeric gene sequence was generated by PCR using the mixture of the above-named two PCR products as the template and V3Ac1-BglII and Vip3Aal-XhoI as the primers.

RESULTS

Cloning of vip3Aal. Over 300 *B. thuringiensis* isolates were screened by PCR using the two pairs of primers that enable amplification of two DNA fragments (444 bp and 364 bp) of the first-discovered and also the most frequently identified vip3 gene. The PCR primers were Vip3Aa1-BglII and Vip3Aa1-XhoI. The same strategy was used to generate the chimeric gene vip3AcAa. The primers used for PCR amplification of the 5’-end portion of vip3Aal were Vip3Aal-BglII (5’-GGCTAGATCTATGAATAATACATTAATGAAAAC) and V3Ac1-BglIII (5’-CC ATGGTTTTACTACTTATATTAATAAGAAG), and the primers for amplification of the 3’-end fragment of vip3AcAa were Vip3Aal-XhoI (5’-TCCCGCTCGAG TATACATAGAGACATGCTCTGAAAAAATGTTTAAATTTTAAAAAGATGAGAA) and Vip3Aal-BglI (5’-GGCTAGATCTATGAATAATACATTAATGAAAAC) and V3Ac1-XhoI (5’-CC CTGCTCTGAG TATACATAGAGACATGCTCTGAAAAAATGTTTAAATTTTAAAAAGATGAGAA). The above-named two overlapping PCR products were gel purified and mixed as the template for the second PCR to generate the full-length hybrid gene with primers Vip3Aal-BglIII and Vip3Aal-XhoI. The PCR products of the chimeric genes vip3AaAc and vip3AcAa were purified after agarose gel electrophoresis and then digested with BglII and XhoI. The digested PCR products were subsequently ligated into pET28a digested with BamHI and XhoI. The clones were confirmed by sequencing. Vip3AaAc is a chimeric protein consisting of the N-terminal 610 amino acid residues of Vip3Aa1 and the C-terminal 179 amino acid residues of Vip3Ac1, while Vip3AcAa is a chimeric protein consisting of the N-terminal 610 amino acid residues of Vip3Ac1 and the C-terminal 180 amino acid residues of Vip3Aa1.

Expression of Vip3 proteins. The plasmid constructs based on expression vector pET28a were transformed into Escherichia coli strain BL21 Star (Stratagene) for expression of the Vip3 proteins. A single colony was picked for starting the culture by use of LB medium at 37°C in a shaking incubator. A final concentration of 0.5 mM IPTG (isopropyl β-D-thiogalactopyranoside) was added to induce expression when the LB culture just began to become turbid, with an optical density of about 0.6 at 600 nm. After 3 h of induction at 37°C, the E. coli cells were collected by centrifugation for 10 min at 3,000 × g and resuspended in 20 mM Tris-HCl buffer (pH 7.5) and then sonicated for bioassay for insecticidal activities. The sonicated cell lysate of each sample was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, and the Vip3 proteins in the samples were densitometrically quantified in gel using a VersaDoc imaging system and Quantity One image analysis software from Bio-Rad Laboratories (Hercules). A series of concentrations of bovine serum albumin (0.1, 0.2, 0.4, 0.8, 1.0, and 2.0 μg per lane) was used as the standards.

Bioassays for insecticidal activities. For the insecticidal activity assays against European corn borer *O. nubilalis*, fall armyworm *S. frugiperda*, cotton bollworm *H. zeus*, and silkworm *B. mori*, an aliquot of a 50-μl sample of Vip3 protein was spread on the surface of an artificial diet prepared in 24-well plates. A preparation from the culture of *E. coli* strain BL21 Star without an insecticidal gene was used as the negative control. After the samples on the diet surfaces were air-dried on the rokers for 2 to 3 h at room temperature, neonate larvae were transferred into the wells and then covered with a permeable Breathe-Easy film (E&K Scientific Products). Gradient concentrations of each expressed protein were used for determining the 50% lethal concentration (LC50) of a Vip3 toxin for a given insect species. Two wells with five insects each were set up for each concentration and replicated three times. Larval mortality was recorded on day 7 after each assay started.

A *T. ni* strain resistant to *B. thuringiensis* endotoxin Cry1Ac and its near-isogenic susceptible strain were used to test their susceptibility to the Vip3 proteins following the methods described by Kain et al. (17). Briefly, five to six concentrations of each toxin and five cups (replicates) for each concentration were included in each bioassay. An aliquot of 0.2 ml of toxin solutions of different concentrations was applied evenly over the diet surface. After 24 h, the surviving insects were scored for each concentration. The surviving insects were air-dried on the rokers for 2 to 3 h at room temperature, neonate larvae were transferred into the wells and then covered with a permeable Breathe-Easy film (E&K Scientific Products). Gradient concentrations of each expressed protein were used for determining the 50% lethal concentration (LC50) of a Vip3 toxin for a given insect species. Two wells with five insects each were set up for each concentration and replicated three times. Larval mortality was recorded on day 7 after each assay started.

Nucleotide sequence accession number. The full-length vip3Aal sequence was deposited in GenBank under accession number DQ054848.
gene, vip3Aa1, in *B. thuringiensis* strains (11). While both fragments were amplified from most of the *B. thuringiensis* isolates screened, only one of the two DNA fragments was amplified from a few isolates. The PCR products from these few isolates were sequenced. One of the isolates, named LG13, was particularly interesting, since the DNA sequence of its vip fragment amplified is significantly different from that of vip3Aa1. Subsequently, the vip3 gene harbored in LG13 was cloned. It turned out that the sequence of the vip3 is identical to that of a toxin gene that was described in a U.S. patent application as “Sup” (K. E. Narva and D. J. Merlo, U.S. patent application 20040128716) and was named vip3Ac1 according to the nomenclature system of Vip toxins (Crickmore et al., http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/). Vip3Ac1 shares 85% overall amino acid sequence identity with Vip3Aa1, and the similarity between Vip3Aa1 and Vip3Ac1 was not evenly distributed over the entire length of the protein. The N-terminal region of about 600 amino acid residues of Vip3Ac1 is highly conserved, sharing 94% identity with that of Vip3Aa1, while the C-terminal region of about 190 amino acid residues is much less conserved, exhibiting only 51% sequence identity with Vip3Aa1.

Insecticidal activity of Vip3Ac1. Due to the significant amino acid sequence differences between Vip3Ac1 and Vip3Aa1, it is interesting to compare their biological activities to illustrate the relationship between sequence and activity. Both Vip3Ac1 and the previously identified Vip3Aa1 were expressed in *E. coli* for biological activity assays (Table 1). Vip3Ac1 was highly active against fall armyworm and cotton bollworm, with LC50s under 200 ng/cm², showing that it was almost as active as Vip3Aa1 against the two pests. However, Vip3Ac1 showed 22.5-fold lower activity against the silkworm than Vip3Aa1. No activity against the European corn borer was detected even at a dose as high as 200 μg/cm² at the diet surface. Activity assays of the mosquito *Anopheles gambiae* and the corn rootworm *D. virgifera* revealed no activity at high doses either. Thus, Vip3Ac1 also appears to be active against certain species of lepidopteran insects.

Insecticidal activities of chimeric proteins generated from sequence swapping between Vip3Aa1 and Vip3Ac1. To evaluate the roles of the conserved and the variable regions of the Vip3A proteins in their toxicity and host specificity and to explore the possibility for toxin improvement by artificial gene recombination, chimeric genes of vip3Aa1 and vip3Ac1 were created. The two chimeric proteins Vip3AcAa and Vip3AaAc, together with Vip3Aa1 and Vip3Ac1, were expressed by *E. coli* (Fig. 1). Both chimeric toxins, Vip3AcAa and Vip3AaAc, were biologically active. Vip3AcAa was active against fall armyworm, cotton bollworm, and silkworm, while Vip3AaAc was active against fall armyworm and cotton bollworm, but not against the silkworm. Vip3AaAc also appears to be active against certain species of lepidopteran insects.

Table 1. Insecticidal activities of Vip3 proteins to the neonates of fall armyworm, cotton bollworm and silkworm

<table>
<thead>
<tr>
<th>Vip3 tested and insect species</th>
<th>Gradient doses (ng/cm²)</th>
<th>Probit analysis</th>
<th>LC50 (range) with 95% fiducial limits (ng/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slope (SE)</td>
<td>x²</td>
<td>df</td>
</tr>
<tr>
<td>Vip3Ac1 FAW</td>
<td>2.5–80</td>
<td>2.93 (0.42)</td>
<td>2.66</td>
</tr>
<tr>
<td>Vip3Ac1 CBW</td>
<td>20–320</td>
<td>3.94 (0.57)</td>
<td>8.35</td>
</tr>
<tr>
<td>Vip3Ac1 SW</td>
<td>0.5 × 10⁴–10 × 10⁴</td>
<td>3.94 (0.57)</td>
<td>5.90</td>
</tr>
<tr>
<td>Vip3Aa1 FAW</td>
<td>2.5–40</td>
<td>4.02 (0.57)</td>
<td>0.09</td>
</tr>
<tr>
<td>Vip3Aa1 CBW</td>
<td>10–80</td>
<td>5.76 (0.94)</td>
<td>0.49</td>
</tr>
<tr>
<td>Vip3Aa1 SW</td>
<td>500–5,000</td>
<td>4.00 (0.87)</td>
<td>2.00</td>
</tr>
<tr>
<td>Vip3AcAa FAW</td>
<td>1.25–10</td>
<td>3.28 (0.49)</td>
<td>4.94</td>
</tr>
<tr>
<td>Vip3AcAa CBW</td>
<td>10–160</td>
<td>5.37 (0.84)</td>
<td>1.31</td>
</tr>
<tr>
<td>Vip3AcAa SW</td>
<td>100–4,000</td>
<td>3.86 (0.49)</td>
<td>5.19</td>
</tr>
<tr>
<td>Vip3AaAc FAW</td>
<td>80–640</td>
<td>2.83 (0.47)</td>
<td>3.11</td>
</tr>
<tr>
<td>Vip3AaAc CBW</td>
<td>800–6,400</td>
<td>3.08 (0.48)</td>
<td>0.86</td>
</tr>
<tr>
<td>Vip3AaAc SW</td>
<td>0.5 × 10⁴–10 × 10⁴</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

a The toxins were applied on the surface of the artificial diets. The death rates were recorded on day 7 after the start of the assays.

b FAW, fall armyworm; CBW, cotton bollworm; SW, silkworm.

c NA, no detectable activity.

Fig. 1. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of recombinant insecticidal proteins from *E. coli*. vip3Ac1, vip3AcAa, vip3AaAc, and vip3Aa1 were all cloned into pET28a for expression in *E. coli* strain BL21 Star. The samples from *E. coli* culture with or without induction by 0.5 mM IPTG were analyzed. The *E. coli* with the empty vector pET28a served as the negative control.
against fall armyworm and cotton bollworm but not silkworm (Table 1). Interestingly, Vip3AcAa showed higher activities than either Vip3Aa1 or Vip3Ac1 against fall armyworm and silkworm, while Vip3AaAc was much less active against all tested insects. However, the most striking activity of Vip3AcAa was its novel activity against European corn borer. The corn borer larvae were inhibited from growth and development by Vip3AcAa at 20 µg/cm² of diet surface (Fig. 2). In contrast, the corn borer larvae grew normally when fed a diet containing Vip3Aa1 or Vip3Ac1 at the same dosage. The novel activity of Vip3AaAc against European corn borer may be of value for corn insect control.

Insecticidal activity of Vip3A toxins against Cry1Ac-resistant cabbage looper. To determine whether an endotoxin-resistant insect would also be cross-resistant to Vip3A proteins, the four toxins studied in this report, Vip3Aa1, Vip3Ac1, Vip3AaAc, and Vip3AcAa, were assayed for their activity against a B. thuringiensis-resistant cabbage looper strain which is highly resistant to Cry1Ac as well as to B. thuringiensis formation Dipel (17). The resistant strain showed a Cry1Ac resistance ratio over 2,000-fold greater than that seen with the susceptible strain (Table 2). However, the B. thuringiensis-resistant strain had a resistance ratio for the Vip3 proteins only 1.0- to 3.2-fold greater than that seen with the susceptible strain (Table 2). The results demonstrated that the B. thuringiensis-resistant cabbage looper showed practically no cross-resistance to any of the Vip3A proteins tested in this study.

DISCUSSION

Vip represents a major discovery among insect toxins and shares no amino acid sequence similarity with the widely used B. thuringiensis endotoxins. Vip toxins and B. thuringiensis endotoxins may be equally valuable for crop transgenic insect control. However, Vip toxins are still at the early stage of discovery and utilization, while B. thuringiensis endotoxins have been extensively explored and utilized in the last several decades. The huge diversity of B. thuringiensis strains may imply the virtual certainty of discovering more novel Vip toxins with desirable insecticidal activities. The identification of Vip3AcAa

![FIG. 2. Activity assays of Vip3Aa1, Vip3Ac1, and Vip3AcAa against European corn borer (Ostrinia nubilalis). All three Vip3 proteins were applied to the surface of artificial diet at a dose of 20 µg/cm². The neonates were then transferred to the surface of the feeding wells that had been air dried. After incubation for 7 days at room temperature, living larvae were picked out for photography. E. coli strain BL21 Star with empty plasmid vector served as the negative control.](http://aem.asm.org/)
in this study serves as a good example for the discovery of such novel Vip toxins. The diversity of spectra of activities is desirable for selectively controlling different insect pests for different crops or for the same crops in different geographic areas. Although the activities of both Vip3Aa1 and Vip3Ac1 are limited to lepidopteran insects, their activities are nevertheless not identical, suggesting that the sequence variation is responsible for the difference in insecticidal properties. It is possible that novel Vip3 toxins with activities against non-Lepidoptera insect species will be discovered in the future, assuming that vip3 evolution is somehow parallel to that of the endotoxins which were first discovered as lepidopteran toxins. New homologues of endotoxins discovered later showed activities against coleopterans and dipterans (6, 7, 22).

In addition to the discovery of novel insecticidal toxins from *B. thuringiensis* strains, it has been shown that the chimeric toxins generated artificially by sequence swapping can also enrich the diversity of the toxins in the laboratory. For instance, enhanced toxin activities were obtained by domain swapping in *B. thuringiensis* endotoxins (8, 19). This is also true for Vip toxins, as was demonstrated in this study. The chimeric Vip3AaCaa not only exhibited a higher activity against the fall armyworm but also gained a novel activity against the European corn borer. Thus, the domain substitution and sequence-swapping approach may be broadly used to create chimeric Vip3 toxins to improve or to create activities. Gene-shuffling methods, a technology that could swap sequences among homologous genes efficiently (5), might be useful to fully explore this opportunity.

Compared to Vip3Aa1, Vip3Ac1 has much lower activity against silkworm, a major industrial insect species widely being raised in southern China, where mulberry trees are planted along with rice fields. It has been a concern that pollens of transgenic rice plants could contaminate mulberry leaves to endanger silkworm. Therefore, Vip3Ac1, with very low activity against silkworm, is apparently a better choice than Vip3Aa1 for development of transgenic rice for insect control.

The development of insect resistance to endotoxins has become a major concern since the wide release of insect-resistant transgenic crops. Implementing insect resistance management measures is important for keeping the long-term effectiveness of transgenic crops. In addition to implementation of refuges in transgenic crop planting areas, gene stacking and crop rotating with two different insecticidal proteins without cross-resistance may dramatically slow the development of resistance (29). This study unambiguously demonstrated that there is virtually no cross-resistance between Cry1Ac and Vip3As in *B. thuringiensis*-resistant *T. ni*. The cry1 genes, including cry1Ab, cry1Aa, and cry1F, are currently the leading genes used in transgenic crops planted worldwide. Thus, vip3 genes may be excellent candidates for stacking with *B. thuringiensis* Cry1 genes in field transgenic crop applications for resistant management.

The members of the major class of the *B. thuringiensis* endotoxins discovered are homologous and are thus likely also to share a similar three-dimensional structure forming the base for their similar modes of action. In contrast, Vip toxins share a similar three-dimensional structure forming the base for their similar modes of action different from those of *B. thuringiensis* endotoxins. Thus, it is plausible that cross-resistance may be less likely to develop between a *B. thuringiensis* endotoxin and a Vip toxin than among two homologous *B. thuringiensis* endotoxins. This notion was supported by the observation that Vip3Aa1 does not bind to the insect midgut aminopeptidase N-like and the cadherin-like molecules, both of which are considered to be the receptors of *B. thuringiensis* endotoxins (18).

Acknowledgments

This research was supported by grants from the National Science Foundation of China (grant no. 30425044) and the 973 Program of the Ministry of Science and Technology of China (grant no. 2003CB114203) and by the IRT program of the Ministry of Education of China (IRT0535). We also express our thanks to AthenaX Corporation (Durham, NC) for providing part of the supplies for the insect bioassay.

References

