THE MANAGEMENT OF DIAMONDBACK MOTH AND OTHER CRUCIFER PESTS

Proceedings of the Third International Workshop,
Kuala Lumpur, Malaysia
29 October – 1 November, 1996.

Malaysian Agricultural Research and Development Institute (MARDI)
Malaysian Plant Protection Society (MAPPS)
THE MANAGEMENT OF DIAMONDBACK MOTH AND OTHER CRUCIFER PESTS

Proceedings of the Third International Workshop,
Kuala Lumpur, Malaysia
29 October – 1 November, 1996

Editors
A. Sivapragasam
W. H. Loke
A. K. Hussan
G. S. Lim

Malaysian Agricultural Research and Development Institute (MARDI)
P. O. Box 12301, G.P.O., 50774 Kuala Lumpur

Malaysian Plant Protection Society
P. O. Box 12351, G.P.O., 50774 Kuala Lumpur
CONTENTS

FOREWORD .. (viii)

PREFACE .. (viii)

LEAD PAPERS

• Crucifer insect pest problems: trends, issues and management strategies. G.S. Lim, A. Sivapragasam and W.H. Loke .. 3

• Prospects for novel approaches towards management of the diamondback moth. A. M. Shelton, C.J. Perez, J.D. Tang and J.D. Vandenbeng ... 17

• Insecticide resistance management in diamondback moth: quo vadis? Richard T. Roush 21

• Bringing science to farmers: experiences in integrated diamondback moth management. Peter A.C. Ooi ... 25

ORAL PAPERS

STATUS OF DBM AND OTHER PESTS OF CRUCIFERS AND THEIR BIOCONTROL

• Seasonality of major brassica pests and incidence of their natural enemies in Central Kenya. G. I. Odour, B. Lohr and A.A. Seif ... 37

• Diamondback moth in the north of Vietnam and proposal of control program. Le van Trinh 44

• The diamondback moth: a problem pest of brassica crops in Kenya. G.N. Kibata 47

• The diamondback moth with special reference to its parasitoids in South Africa. Rami Kfir 54

• A survey of insect parasitoids of Plutella xylostella and seasonal abundance of the major parasitoids in Hangzhou, China. Liu Shu Sheng, Wang Xin Geng, Guo Shi Jian, He Jun Hua and Song Hui Hui .. 61

• Experiences with biological control of diamondback moth in the Philippines. Ofelia D. Ventura 67

• Biological control of Bemisia argentifolii (Homoptera: Aleyrodidae) Silver leaf whitefly; a crucifer pest in the southern USA. A.A. Kirk, M.A. Ciomperlik, J.A. Goolby, D.C. Vacek, L.E. Wendel and J.C. Legaspi ... 78

BIOLGICALLY-BASED TECHNOLOGIES

• Host specificity assessments of Cotesia plutellae, a parasitoid of diamondback moth. P.J. Cameron, G.P. Walker, M.A. Keller and J.R. Clearwater ... 85

• Effects of nectar-producing plants on Diadegma insulare (Cresson), a biological control agent of diamondback moth, Plutella xylostella (L.). Idris, A.B. and E. Grafius ... 90

• Characteristics of parasitism of diamondback moth by Oomyzus sokolowskii (Hymenoptera: Eulophidae). N.S. Talekar ... 97

• Bacillus thuringiensis Berliner subspecies kurstaki in the management of diamondback moth in India. G. Shankar, S. Mallikarjunappa, U. Ganesha Bhat, G.N. Kendappa and M.S. Mithyantha 104

• Effects of Bacillus thuringiensis on eggs of three lepidopterous pests of crucifer vegetable crops. Liu Shu Sheng and Zhang Guang Mei ... 109

• Occurrence of a granulosis virus from two populations of Plutella xylostella (L.) in India. R.J. Rabindra, N. Geetha, S. Renuka, S. Varadharajan and A. Regupathy ... 113

• Pre-mortality effects of Zoophthora radicans infection in the diamondback. Michael J. Furlong, Giadi V.P. Reddy, Judith K. Pell and Guy M. Poppy ... 116

• Integration of Zoophthora radicans and synthetic female sex pheromone for the control of diamondback moth. Michael J. Furlong and Judith K. Pell ... 123

• The feasibility of using sterile insect technique for the control of diamondback moth on cabbage in Cameron Highlands. Dzolkhifli Omar and Mohd Jusoh Mamat ... 130

• Antifeedant activity of active fractions from a tropical plant, Andrographis paniculata Nees against the diamondback moth. Wawan Hermawan, Shuhei Nakajima, Ritsuko Tsukuda, Kenji Fujisaki and Fusao Nakasui ... 134

• Trap crops for some cabbage pests of the Asia Pacific lowland tropics. R. Muniappan, T. S. Lali and Prem Singh ... 139
DECISION TOOLS FOR DBM
- Simulation model for forecasting population fluctuations of the diamondback moth in cabbage fields. Kazunobu Okadome .. 145
- Improving IPM decisions for the management of diamondback moth on cabbages using sequential sampling plan. Chua Tock Hing and A. Sivapragasam .. 153
- *Plutella* equivalent action threshold for insect pests of crucifers using Chinese kale as a model. Md. Jusoh Mamat .. 158

CHEMICAL CONTROL
- Control of lepidopteran insects in leafy cole crops with spinosad insect control agent. R.W. Naish, K. Kaneshi and D. Sunindyo .. 165
- Management of diamondback moth with emamectin benzoate and *Bacillus thuringiensis* subsp. *aizawai* insecticides. Ronald F.L. Mau, Dennis M. Dunbar, Laura Gusukuma-Minuto and Robin S. Shimabuku ... 178
- DICARE® WG 37.5 as a partner of anti-resistance strategy product for the control of diamondback moth (*Plutella xylostella* L.) in Thailand. Jaruek Ribuddachart, Ittidet Chaimongkol, Patiparn Saitharmrong, Somshith Chomansilpe and Amornrunt Bhandhufalck .. 185
- AC303,630 - A new novel insecticide-acaricide for control of resistant arthropod pests. S.C. Lee, S. Sujin, P.J. Huang, X.M. Zhang and G.T. Ooi .. 190
- Activity of fipronil on diamondback moth. Arlin L. Bostian, Sinchai Swasdichai and Laili bin Darus .. 195

PESTICIDE RESISTANCE MECHANISMS AND RESISTANCE MANAGEMENT STRATEGIES
- Involvement of acetylcholinesterase in malathion-resistance of the diamondback moth. Maa, Can Jen William, Jin-Fen Liu, Yi-Yiu Tzau and Ch’ang-Hang Ch’eng ... 201
- Resistance mechanisms of *Bacillus thuringiensis* subsp. *kurstaki* and *aizawai* in a multi-resistant field population of *Plutella xylostella* from Malaysia. Denis J. Wright, Muhammad Iqbal, Francisco Granero and Juan Ferre .. 206
- Biochemical and physiological characteristics of chlorfluazuron resistant diamondback moth. Tadashi Miyata, Taslima Rahman, Wu Gang and Adel Ramzy Fahmy .. 211
- The historical failure of resistance management of the diamondback moth and the way forward. S. Uk and J.G. Harris .. 222
- A decade of integrated pest management (IPM) in brassica vegetable crops – the role of farmer participation in its development in Southern Queensland, Australia. S. Heisswolf, B.J. Houlding and P.L. Deuter .. 228
- Insecticide resistance in diamondback moth (DBM), *Plutella xylostella* (L.): Status and prospects for its management in India. A. Regupathy .. 233

DEVELOPMENT AND IMPLEMENTATION OF IPM
- Multitrophic interactions and the diamondback moth: implications for pest management. Robert H.J. Verkerk and Denis J. Wright .. 243
- Integrated pest management of diamondback moth: the Philippines highlands’ experience. Jocelyn E. Eusebio and Belen Morallo-Rejesus .. 253
- Development and use of a biological control-IPM system for insect pests of crucifers. K. Duane Biever .. 257
• A *Plutella/Crocidolomia* management program for cabbage in Indonesia. B. M. Shepard and N.A. Schellhorn ... 262

• Technology transfer of *Cotesia*-based IPM for diamondback moth on lowland crucifers in the Philippines. B. Morallo-Rejesus, E.L. Inocencio, J.E. Eusebio and S.F. Barroga 267

POSTER PAPERS

• Introduction and evaluation of *Cotesia rubecula*, a parasitoid of *Pieris rapae* in New Zealand. P.J. Cameron and G.P. Walker ... 279

• Aphids on crucifers: multitrophic and selective insecticide interactions for enhanced control. Robert H.J. Verkerk and Denis J. Wright ... 284

• Insecticide resistance in diamondback moth, *Plutella xylostella* (L.), in southern Australia. Nancy M. Endersby and Peter M. Ridland .. 290

• Diamondback moth: Feeding preference among commercial varieties of head cabbage. R.S. Shimabuku, R.F.L Mau and L. Gusukuma-Minuto .. 295

• The effect of stress on the susceptibility of *Plutella xylostella* to *Bacillus thuringiensis*. T.H. Schuler and H.F. van Emden .. 298

• Inheritance and stability of resistance to *Bacillus thuringiensis* formulations in field populations of diamondback moth, *Plutella xylostella*. Katsuki Imai and Yuhzoh Mori 302

• Control of cabbage Lepidoptera by naturally occurring arthropod predators. M.A. Schmaedick, A.M. Shelton and M.P. Hoffman .. 308

• The status of diamondback moth and its natural enemies in the Forto Novo and Cotonou areas in Benin. D. Bordat and A.E. Goudegnon .. 312

• Influence of HD1 on the developmental stages of *Diadegma* sp. parasitoid of diamondback moth. R.G. Monerrat and D. Bordat ... 314

• Monitoring of insecticide resistance in diamondback moth based on cholinesterase genotype. Masayasu Kato, Thomas M. Brown and Tasashi Miyata ... 317

• Allozymic polymorphism among three populations of *Plutella xylostella*. Noran, A.M. and Tang, P.Y. ... 322

• Exploratory survey of cabbage nurseries in Cameron Highlands, Malaysia. J.G.M. Vos and W.L. Reerink .. 326

• Entomopathogenic nematodes against foliage feeding crucifer pests in the tropics. Judy M. Mason and Denis J. Wright .. 328

• Baseline data for field monitoring system for *Bacillus thuringiensis* resistance in Tamil Nadu (India) *Plutella xylostella* (L.) populations. J. Chandrasekaran and A. Regupathy .. 332

• Sampling adult male populations of *Hellula undalis* (Lepidoptera:Pyralidae) in cabbage using virgin-females baited sticky trap. A. Sivapragasam, Asma Ahmad and Rafi Abdullah ... 335

• Using radiation dose of 175Gy for sterile insect technique in diamondback moth. Maimun, T. and M.C. Mahani ... 339

• Mass rearing of diamondback moth on artificial diet: potential for parasitoid production and population studies. Hussan, A.K., A. Sivapragasam, A. Asma and R. Azman .. 343

WORKSHOP SUMMARY ... 345

SUBJECT INDEX ... 349
FOREWORD

Cruciferous vegetables are economically important crops for the Asian populace as they form an essential part of the diet. On a worldwide basis, the extent of cultivation of these vegetables is about 2.2 million ha with fifty percent of the production coming from Asia. However, despite the advancement in pest control technologies, pests such as the ubiquitous diamondback moth (DBM), still pose a major constraint for cruciferous vegetable production in many countries. In recent years, DBM has become the most destructive insect of cruciferous plants throughout the world with annual costs for managing it estimated to be in the region of US$1 billion. This pest now occurs wherever crucifers are grown and is believed to be the most universally distributed of all Lepidoptera. Despite the numerous attempts made to control this pest, outbreaks and poor control, etc. are still being reported in many countries. Of pertinence here is the increasing resistance development of this pest against intensively-used pesticides and the microbial agent, Bacillus thuringiensis. Associated with indiscriminate applications of pesticides is the greater concern of governments towards the health of users and the safety of the produce and the environment.

Crucifer pests, in particular the diamondback moth, have been the key subjects of two widely attended international workshops held in Taiwan. The organization of the third workshop was, therefore, a timely one and an anticipated development. This third workshop provided a useful platform to deliberate the recent advances made in the management of the DBM and other associated pests of crucifers. Of particular significance was the sharing of information between more than 160 participants from over 20 countries and the underscoring of approaches that minimize the use of ‘hard’ pesticides and increase the use of biologically-based technologies. This proceedings, which will complement the two earlier ones, thus offers a unique collection of experiences on worldwide endeavours to manage the DBM and other crucifer insect pest problems.

MARDI is pleased to have joined hands with the Malaysian Plant Protection Society (MAPPS), Centre for Agriculture and Biosciences International (CABI)–Asia Regional Office, Department of Agriculture, Malaysia and the Silwood Centre for Pest Management, United Kingdom in successfully organising this workshop. I take this opportunity to thank the Honorable Minister of Agriculture, Malaysia once again for his gracious presence in officiating the opening of the workshop. I also express my gratitude to the various sponsors for their financial support and to all speakers, poster presenters and participants for their participation. Last but not least, my special thanks go to the Editorial Committee and all others involved in the publication of this proceedings for their enduring and tireless efforts.

Dr. Saharan Hj. Anang
Deputy Director General MARDI/
Chairman, Organising Committee
Third International Workshop on the Management of the Diamondback Moth and Other Crucifer Pests
PREFACE

This proceedings consist of papers presented at the Third International Workshop on the Management of Diamondback Moth and the Other Crucifer Pests which was held in Kuala Lumpur, Malaysia from the 29th October to 1 November 1996. It also includes a special summary highlighting the important points discussed during the workshop.

The workshop papers have been compiled and presented in a standard journal format. As with many other proceedings of this nature, most of the papers received minimal amount of reviewing and editing which have invariably led to variations in standard and style of presentation. However, it is hoped that major factual and typographical errors have been minimized. For some papers involving a major effort of editing, every attempt has been made to retain the original meaning and views of the authors. All claims of commercial products and processes as well as views expressed do not imply endorsement by the editors or the organisers.

Based on the papers presented during the workshop, the proceedings is divided into thematic sections that include lead papers, oral presentations and poster presentations. The oral presentations have been for convenience divided into six major subsections, viz., status of the diamondback moth and other pests of crucifers and their biocontrol, biologically-based technologies, decision tools, chemical control, pesticide resistance mechanisms and resistance management strategies and finally, experiences on the development and implementation of integrated pest management programmes in various countries. In addition, keywords and subject index have been included to facilitate easy reference by the user.

We take this opportunity to thank the Director General of MARDI, the President of the Malaysian Plant Protection Society and the Organising Committee of the workshop headed by Dr. Saharan Hj. Anang for their relentless support and encouragement. A special word of thanks is in order for all authors of papers for their cooperation and the MARDI Publication Unit, viz. Hjh. Rohani Mahmood, Marina Fatimah Baptist, Siti Fatimah Karim, Azidah Mohd. Yusof, Hamidah Hassan and Zulkhairy Aminuddin for their efforts and cooperation in the formatting and printing of this proceedings. Last, but not least, we acknowledge and accept responsibility for any errors that have not been corrected due to our human fallibility.

Editors